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Abstract
Using a new kinematical description of a free three-body problem in
hyperspherical coordinates (Matveenko A V and Fukuda H 1998 J. Phys.
A: Math. Gen. 31 5371) we derive two infinite series of matrix identities
interconnecting triangle angles, particle masses and internal hyperspherical
angles. The corresponding relations for the matrix elements are practically all
new.

PACS numbers: 45.50.Jf, 03.65.-w, 21,45.+v

1. Introduction

The hyperspherical harmonic (HH) method for three-body systems is, nowadays, at a very
advanced level, though mainly in numerical applications (see Rosati and Viviani 1999, Jensen
et al 1999 or Krivec and Mandelzweig 1999 for examples). More recently, we have suggested
making use of a special minimal subset of HHs as a pure rotational part of primitives used
in the variational treatment of three-body states. These ‘physical’ HHs proved to be useful
as an instrument for the derivation of a new representation for the Wigner rotation matrices
(Matveenko 1999) and identities including the associated Legendre polynomials of the same
angle (Matveenko and Fukuda 1998).

In this paper, using the same idea, we derive matrix relations between HH solution matrices
in different Jacobi channels (basically associated Legendre polynomials depending on different
internal hyperspherical angles), with two more matrices being involved: that of the Raynal–
Revai transformation (depending on the masses of the particles) and that of the Wigner rotation
(depending on the internal triangle angle). The pilot variational calculations of some three-
body Coulomb systems using these identities numerically (not discussing them) were presented
at the International Workshop on Resonances in Few-Body Systems (Sarospatak, 2000). The
proceedings will appear soon (Matveenko et al 2001).

We give a simplest example of our identities in the introduction. Section 2 proceeds with
mathematics needed for the derivation of two general identities presented in section 3. The
content of the third section is completely new. Section 4 contains our conclusions.
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For a system of three particles with masses mi(i = 1, 2, 3) we have three sets of Jacobi
vectors {xi ,yi}. As the basis in the particle plane we choose the set {i = 3}: the first Jacobi
coordinate x3 = x to be the vector from particle 2 to particle 1, with the reduced massM3 = M;
and the second Jacobi coordinate y3 = y from the centre of mass of (1 + 2) to particle 3, with
the reduced mass µ3 = µ. For the reduced masses in the {i}-channel we have the well known
expressions

1

Mi

= 1

mj

+
1

mk

1

µi
= 1

mi

+
1

mj +mk

. (1)

Accordingly, three mass parameters, µ,M and κ = (m2 − m1)/(m1 + m2), will be basic in
our approach; using these the {i = 2} Jacobi pair can be found from the equality(

c2 0
0 1/c2

) (
x2

y2

)
=

( − cosφ23 − sin φ23

sin φ23 − cosφ23

) (
c3 0
0 1/c3

) (
x3

y3

)
(2)

where

c4
2 = 4c/ρ2

2 c4
3 = 1/4c sin2 φ23 = 1/ρ2

with c = µ/4M and ρ2 = 1 +c(1 +κ)2. The transformation (2) includes the diagonal matrices
of mass weighting and the orthogonal matrix of the so-called kinematic rotation by the angle
φ23 (Raynal and Revai 1970).

Starting with the kinetic energy operator of a three-body problem in the centre-of-mass
system we note that it is remarkably simple in hyperspherical coordinates

T = − 1

2M

1

R5

∂

∂R
R5 ∂

∂R
+

�2

2MR2
. (3)

Here, for our choice of the Jacobi basic channel {i = 3} the hyperradius R will be defined by

R =
(
x2 +

µ

M
y2

)1/2
. (4)

The squared hyperangular momentum operator �2 and its eigenfunctions (HHs) defined by(
�2 −K(K + 4)

)
YK(�) = 0 (5)

depend on five hyperangles � (Avery 1989). In this definition only the value of the grand
angular momentum K = 0, 1, 2 . . . has been specified so far. As Avery (1989) has found, the
total number of degenerate HHs having the same value of K is

dim(6,K) = (K + 1)(K + 2)2(K + 3)/6.

If HHs from different Jacobi channels are to be used in the applications we usually need the
Raynal–Revai orthogonal transformation matrix that interconnects degenerate sets for a given
value of K .

In our approach, we firstly make use of the fact that, if written in the body-fixed frame,
HHs can be factorized into the extrinsic part depending on three Euler-rotation angles and the
intrinsic one that depends on two internal variables

Y
JpMJ

KlL (αi, θi, γ̃ , β̃, α̃) =
J∑

m′=0(1)

y
Jp

KlLm′(αi, θi)B
JpMJ

m′ (γ̃ , β̃, α̃) (6)

where the regular hyperspherical angles are defined by

cos θi = (x̂i ŷi ) tan αi = M
1/2
i xi

µ
1/2
i yi

. (7)
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Now, all quantum numbers needed for our discussion of the free nonrelativistic state are
explicitly given, including those of the total parity p, total angular momentum J , withMJ and
m′ being projections of J , and the usual angular momentum l = −iy × ∇y , L = −ix × ∇x.
The body-fixed z-axis is specified by the set {α̃, β̃, γ̃ }, and BJpMJ

m′ are the parity preserving
combinations of the Wigner D-functions (Matveenko and Fukuda 1996).

In what follows we shall manipulate with two {i = 2} and {j = 3} ‘physical’ (Matveenko
and Fukuda 1998) subsets of HHs satisfying either the K = J or the J + 1 assumption, being
equivalent to the conditions introduced by Schwartz (1961)

L + l = J if {p = (−)J } or L + l = J + 1 if {p = −(−)J }. (8)

Actually, we shall use only intrinsic harmonics (IHHs), i.e. vector columns ‖yKlLm′(αi, θi)‖Jp,
in which case, using (8), we can simplify the notation (quantum numbers K and L are now
not needed). This means that we can write using ε = K − J

‖ylm′(αi, θi)‖Jp = ‖yKlLm′(αi, θi)‖Jp ε � m′ � l. (9)

Here and below, though the running index of the vector column m′ can be bigger than l the
components of IHHs (9) for m′ > l are equal to zero, that allows one to arrange the solution
matrices composed from (9) in the triangular form. The corresponding degeneracies of the
specified subsets are easily found to be N(K = J ) = J + 1 and N(K = J + 1) = J for states
of normal and abnormal parity, respectively, which makes all the solution matrices not only
triangular but also square.

Say, using (2) one can form scalar products of vectors from different Jacobi sets which will
provide the identities including the usual internal angle of the triangle θ ′

23 = arccos(x̂2x̂3), the
kinematic angle φ23 and the hyperspherical angles (7). We shall be able to derive two infinite
series of matrix equalities of that kind, i.e. those interconnecting two pairs of hyperspherical
angles (7). The typical example reads(

cos θ ′
23 sin θ ′

23

− sin θ ′
23 cos θ ′

23

) (
sin α2 cosα2 cos θ2

0 − cosα2 sin θ2

)

=
(

sin α3 cosα3 cos θ3

0 − cosα3 sin θ3

) ( − cosφ23 sin φ23

− sin φ23 − cosφ23

)
(10)

or, as an example of the scalar identity,

sin φ23cosα3 sin θ3 = −sin α2 sin θ ′
23 (11)

for the corresponding element of the matrix equation (10). The geometrical background of (10)
is that the triangular solution matrix of vector-column intrinsic HHs in the channel {i = 2}
(utilizing x̂2 as the quantization axis) (see below and the next section for more details), if
multiplied from the left by the rotation matrix, is equal to the equivalent solution matrix but
in the channel {i = 3} (quantized with respect to x̂3), multiplied from the right by the matrix
of kinematic rotation. This is exactly the Raynal–Revai transformation relation used in the
subspace of ‘physical’ HHs for their intrinsic part IHHs. An additional rotation matrix accounts
for the different quantization axis used in the same equation (10).

Later we shall show that the matrix identity (10) is just the (J = 1, p = −1) example of
the general result interconnecting IHHs in {2}- and {3}-channels

d̂Jp(θ ′
23)‖p(α2, θ2)‖Jp = ‖p(α3, θ3)‖JpRJp(φ23) (12)

where the parity-projected Wigner d̂Jp(θ) matrices are defined as by Matveenko (1999).
While the regular Raynal–Revai transformation allows one to interconnect five-

dimensional HHs expressed in different Jacobi-channel coordinates, we relate (12) by the
rotation in the particle plane two special degenerate subsets (K = J ) or (K = J + 1) of
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the two-dimensional vector-column IHHs stemming from (6). It seems to be clear, but worth
noting, that the derivation of (12) is a by-product of a formal quantum description of a free
three-body problem in hyperspherical coordinates.

2. Intrinsic hyperspherical harmonics

In order to find the equation for the vector-column IHHs (9) one should search for the
eigenfunctions of �2 from the kinetic energy operator (3) in the form (6) and integrate over
α, β, γ . This familiar procedure (actually, the partial wave analysis) will convert �2 into
the matrix operator [�2

i ]
Jp and will result in the corresponding system of the Schrödinger

equations in two variables (see below). In our approach we should not specify the position of
the body-fixed quantization axis; let us just mention that the resulting equations will strongly
depend on its location (Matveenko and Fukuda 1996).

Using the auxiliary vector column ‖pl(αi, θi)‖Jp for all possible l = ε, . . . , J

‖pl(αi, θi)‖Jp = sinL αi cosl αi√
l!! L!!




(−1)εUJpl

εL P ε
l (θi)

· · ·
(−1)mUJpl

mL P
m
l (θi)

· · ·
(−1)lUJpl

lL P l
l (θi)

0
· · ·
0




m = ε, . . . , l{J } (13)

with the coefficients

U
Jpl

mL = p(−)J+l+m
√

2 − δ0m(l, J,−m,m|L, 0)

( l∑
m=0

(U
Jpl

mL )
2 = 1

)
(14)

(Chang and Fano 1972), we define the basic entity of the approach: the vector-column IHH

‖yl(αi, θi)‖Jpω = dJp(ωi) ‖pl(αi, θi)‖Jp (15)

with an arbitrary choice of the quantization axis within the particle plain (direction ω). Here,
cosωi = ω · x̂i , dJp(ωi) is the parity preserving combination of the Wigner rotation matrices
(Matveenko 1999) and Pm

l (θi) are the normalized associated Legendre polynomials.
In accord with (5), the IHHs ‖yl(αi, θi)‖Jpω solve the matrix differential equation in two

variables (
[�2

i ]
Jp
ω −K(K + 4)

) ‖yl(αi, θi)‖Jpω = 0 ε � l � J

where [�2
i ]
Jp
ω is the hyperangular part of the total three-body kinetic energy operator (3)

projected onto the states of fixed total angular momentum J and parity p. If we make use of
the special coordinate system with ω = x̂3 we have ω3 = 0, d̂Jp(0) will be simply a unity
matrix and we obtain using (15) the identity ‖yl(α3, θ3)‖Jpω=x̂3

= ‖pl(α3, θ3)‖Jp.
Finishing the section, we illustrate its content by writing down the details for the

(J = 1, p = −1) case. Since it is a normal parity case, we have two IHHs with l = 0, 1 in
each Jacobi channel. The solution matrix composed from (15) for {i = 2, 3} channels will be

d̂1,−1(θ ′
23)

(
sin α2 cosα2 cos θ2

0 − cosα2 sin θ2

)
and

(
sin α3 cosα3 cos θ3

0 − cosα3 sin θ3

)
(16)
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respectively. Here, for the {i = 3} case no additional rotation is needed as x = x3 was chosen
as the quantization axis, and for the {i = 2} channel the corresponding rotation matrix is
(Matveenko 1999)

d̂1,−1(θ) =
(

cos θ sin θ
− sin θ cos θ

)
. (17)

The eigenvalue equation utilizing the {i = 3} solution matrix (16) will be

(
[�2

3]1,−1
ω̂=x̂3

− 5
) (

sin α3 cosα3 cos θ3

0 − cosα3 sin θ3

)
= 0 (18)

with the following chain of notation:

[�2
3]1,−1

ω=x̂3
= �2

3 − 1

sin2 α3 cos2 α3

(
1

sin θ3

∂

∂θ3

sin θ3
∂

∂θ3

− 1

sin2 θ3
J 2
x

)
+

J2 + B̂

sin2 α3

�2
3 = − 1

sin2 2α3

∂

∂α3

sin2 2α3
∂

∂α3

J2 =
(

2 0
0 2

)
J 2
x =

(
0 0
0 1

)
B̂ = −

(
0 ∂

∂θ3
+ cot θ3

− ∂
∂θ3

0

)
.

3. Hyper-trigonometry identities

There are only minor details that make the treatment of the normal and abnormal parity cases
different. We shall start with the normal parity case: setting p = (−)J and using the (p = n)

index for the parity-dependent expressions. The body-fixed quantization axis (ω = x̂3 = x̂)

is still used in order to make the analysis simpler. As discussed above, the solution matrices
in i = {2} and {3} Jacobi channels are ‖y(α2, θ2)‖Jpx̂ = d̂Jp(θ23) ‖p(α2, θ2)‖Jp and

‖y(α3, θ3)‖Jpx̂ = ‖p(α3, θ3)‖Jp, respectively. Any IHH ‖yl(α2, θ2)‖Jpx̂ can be expressed as

a linear combination of ‖yl′(α3, θ3)‖Jpx̂ , (ε � l, l′ � J ); the corresponding transformation
matrix RJp has been introduced by Raynal and Revai (1970) for five-dimensional HHs in
the ordinary space-fixed frame. In our case, for vector-column IHHs depending only on two
variables (15), the proper relation will be

d̂Jn(θ ′
23)‖p(α2, θ2)‖Jn = ‖p(α3, θ3)‖Jn‖dJ/2−J/2+l,−J/2+l′(2φ23)‖ (l, l′ = 0, . . . , J ) (19)

where all involved matrices have the (J + 1) ∗ (J + 1) dimension. The upper triangle matrices
‖p(αi, θi)‖Jn with matrix elements plm(αi, θi) have their columns (12) numbered by the
quantum number of the pair angular momentum l(0 � l � J ) while its projection m onto
the body-fixed xi-axis serves for row numbering (only ‖plm(αi, θi)‖Jn with 0 � m � l are
nonzero). Two more matrices, normal parity rotation matrix d̂Jn and the usual Wigner rotation
matrix ‖dJ/2−J/2+l,−J/2+l′ ‖, are orthogonal. We have used in (19) the result derived by Raynal
(1973) allowing one to express Raynal–Revai matrices for the extreme value of the grand
angular momentum K = J in terms of DJn(φ) = ‖dJ/2−J/2+l,−J/2+l′(2φ)‖, (0 � l, l′ � J ). The
coefficients (14), composing (12) for the normal parity case, read

UJnl
mL =

(
2

1 + δm0

(2l)!(2L + 1)!(J −m)!(J +m)!

(2J + 1)!(l −m)!(l +m)!(L!)2

)1/2

L = J − l. (20)

Using the triangular structure of ‖p(αi, θi)‖Jn, and analytic expressions for the matrix elements
of the first row (first column) of d̂Jn (Matveenko 1999) and ‖dJ/2m,m′(φ)‖ (Varshalovich et al
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1988), we present four simplest scalar identities for the corner matrix elements of the matrix
equation (19). For the [0, 0] one (the upper left corner of (19)) we have

sinJ α2√
(2J + 1)J !!

P 0
J (θ

′
23) =

J∑
l=0

√
J !

l!(J − l)!
pl0(α3, θ3) cosJ−l φ23 sinl(−φ23). (21)

The [0, J ] case is the most complicated; it includes two summations

J∑
m=0

√
2

(1 + δ0m)(2J + 1)
P J
m(−θ ′

23) pJm(α2, θ2)

=
J∑
l=0

√
J !

l!(J − l)!
pl0(α3, θ3) cosl φ23 sinJ−l φ23. (22)

The simplest case is the [J, 0] one: it does not include the summation, does not depend on J
and thus coincides with the (J = 1, p = −1) example from the introduction (11). Moreover,
the last [J, J ] corner provides

2√
J !!(2J + 1)

cosJ α3 cosJ φ23P
J
J (θ3) =

J∑
m=0

dJnJm(θ
′
23) pJm(α2, θ2). (23)

It can be checked that by putting J = 1 in the last three equations one is reproducing the
corresponding scalar equalities from matrix equation (10).

For the abnormal parity states, i.e. those defined by the conditions K = J + 1 and
p = −(−)J , we obtain similarly the matrix identity interconnecting IHHs in the i = {2}
and {3} Jacobi channels

d̂Ja(θ ′
23)‖p(α2, θ2)‖Ja = ‖p(α3, θ3)‖Ja‖d(J−1)/2

−(J+1)/2+l,−(J+1)/2+l′(2φ23)‖ (1 � l, l′ � J )

(24)

where now we have to deal with the (J ∗J )matrices having 1 � l, m � J numbering columns
and rows of ‖p(αi, θi)‖Ja (as in the normal parity case matrix elements are nonzero only for
1 � m � l). Here (24), once again we have used the result of Raynal (1973), this time for
K = J + 1 RJa(φ23) being given as the Wigner rotation matrix. The Chang–Fano coefficients
are now expressed by

UJal
mL = 2Lm

(
2(2L + 1)

(2l − 1)!(2L− 1)!(J −m)!(J +m)!

(2J + 2)!(l −m)!(l +m)!(L!)2

)1/2

L = J − l + 1.

(25)

The four simplest scalar identities for the corner matrix elements of (24) will read

[1, 1] →
√

6

J (J + 1)(2J + 1)J !!
cosα2 sinJ α2 sin θ2

P 1
J (θ

′
23)

sin θ ′
23

= −
J∑
l=1

√
(J − 1)!

(l − 1)!(J − l)!
pl1(α3, θ3) cosJ−l φ23 sinl−1(−φ23) (26)

[1, J ] →
√

6

J (J + 1)(2J + 1)

J∑
m=1

m
PJ
m(θ

′
23)

P 1
1 (θ

′
23)
pJm(α2, θ2)

= −
J∑
l=1

√
(J − 1)!

(l − 1)!(J − l)!
pl1(α3, θ3) cosl−1 φ23 sinJ−l φ23 (27)
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[J, 1] → cosα2 sin α2 sin θ2 = cosα3 sin α3 sin θ3 (28)

[J, J ] → J

√
6

J (J + 1)(2J + 1)
cosJ α3 sin α3

P J
J (θ3)√
J !!

cosJ−1 φ23

=
J∑

m=1

dJaJm(θ
′
23) pJm(α2, θ2). (29)

Once again, the simplest [J, 1] result does not depend on J and can be thought of as a
hyperspherical sin-theorem; in order to obtain the above expression (28) the identity (11)
should be applied.

Both matrix equalities, (19) and (24), were checked numerically. For this purpose we have
introduced hyperspheroidal coordinates ξ = (x1 + x2)/x3, η = (x1 − x2)/x3 (Matveenko and
Fukuda 1996) and expressed in their terms all auxiliary variables entering the above identities:

sin α3 = 1/
√
ρ cos θ3 = −(ξη − κ)

√
c/(ρ − 1)

sin α2 = (ξ + η)
√
c/(ρρ2)

cos θ2 = −[c(1 + κ)(ξ + η)2 − ρ2(1 + ξη)]/[
√
ρρ2(ξ + η) cosα2]

cos θ ′
23 = −(1 + ξη)/(ξ + η)

with ρ = 1+c(ξ 2 +η2−2κξη+κ2−1); constants ρ2, c, κ and kinematic angle φ23 were defined
in the introduction. The channel-independent equality (28) can be easily checked analytically
to give

cosαi sin αi sin θi =
√
c(ξ 2 − 1)(1 − η2)

ρ
(i = 1, 2, 3). (30)

4. Conclusions

For any given value of the total angular momentum of a three-body system the underlying
matrix expressions (19) and (24) provide (J + 1)2 and J 2 scalar equalities, respectively.
Roughly speaking, they are all new; only a few of them can be easily derived using standard
trigonometry tools. We hope that in realistic three-body calculations, utilizing hyperspherical
coordinates, our identities will be helpful. One example of this kind can be found in our
recent discussion of the semianalytic description of the highly rotational states of antiprotonic
He (Matveenko and Alt 2000). In that paper, we were able to resolve the Coriolis coupling
analytically using the angular part of the variational primitives in the form (15). In this case, the
matrix structure of the Schrödinger operator can be reduced to the calculation of the analytic
function σ ijll′ (ξ, η) = ∑

plm(αi, θi)pl′m′(αj , θj )d
Jp

mm′(ωij ), with cosωij = x̂i · x̂j . As at the
end of section 3, before starting calculations we introduce a pair of global hyperspherical
angles ξ, η, common to all Jacobi channels. Actually, σ ijll′ is the matrix element of the ‘angular

form-factor matrix’
[‖yi‖Jpω

]T [‖yj‖Jpω
]
, which, owing to (19) or (24), can be calculated using

either of the two alternative expressions[‖yi‖Jpω
]T [‖yj‖Jpω

] = [‖yi‖Jp
x̂i

]T
d̂Jp(θ ′

ij )‖pj )‖Jn = [‖pi‖Jp]T ‖pj‖JpRJp(φij ) (31)

where the equality (15) for the IHH solution matrices ‖yi )‖Jp
ω=x̂i

= ‖pi‖Jp has been used.
The choice of the variational primitives in a vector-column form is really giving a new

kinematical description in the adiabatic approach to a three-body problem: the magnetic
quantum number is summed out when the corresponding generalized eigenvalue problem is
formulated and the number of adiabatic states is decreased by the factor J . This allows one
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to overcome partially numerical difficulties provoked by sharply peaked radial and angular
non-adiabatic couplings in the avoided crossing regions (Matveenko et al 2001).

A peculiar feature of the identities (19) and (24) is that they relate Wigner rotation matrices
of two types: regular ones ‖dJmm′)‖, as defined by Varshalovich et al (1988), and parity-projected
ones d̂Jp. The latter can be defined in the factorized form, recently derived in a similar context
by Matveenko (1999) and by Manakov et al (2000) using a different technique.

Acknowledgment

One of the authors, AVM, greatly appreciates fruitful discussions with Professor Bertrand
Giraud of Service de Physique Théorique, Scalay, where part of the present work was done.

References

Avery J 1989 Hyperspherical Harmonics (Dordrecht: Kluwer)
Chang E S and Fano U 1972 Phys. Rev. A 6 173
Jensen A S et al 1999 Few-Body Syst. Suppl. 10 19
Krivec R and Mandelzweig V B 1999 Few-Body Syst. Suppl. 10 61
Manakov N L, Meremianin A V and Starace A F 2000 Phys. Rev. A 61 022103
Matveenko A V 1999 Phys. Rev. A 59 1034
Matveenko A V and Alt E 2000 Hyperfine Interact. 127 143
Matveenko A V, Alt E and Fukuda 2001 Few-Body Syst. Suppl. at press
Matveenko A V and Fukuda H 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1575
——1998 J. Phys. A: Math. Gen. 31 5371
Raynal J 1973 Nucl. Phys. A 202 631
Raynal J and Revai J 1970 Nuovo Cimento A 68 612
Rosati S and Viviani M 1999 Few-Body Syst. 27 73
Schwartz C 1961 Phys. Rev. 123 1700
Varshalovich D A, Moskalev A N and Khersonskiy V K 1988 Quantum Theory of Angular Momentum (Singapore:

World Scientific)


